Human Powered Vehicle

Problem Definition and Project Plan

Yousef Alanzi, Evan Bunce, Cody Chenoweth, Haley Flenner, Brent Ives, Connor Newcomer September 25th, 2015

Overview

- Introduction
- Need Statement
- Project Goal
- Objectives
- Constraints
- Quality Functional Deployment
- House of Quality
- Project Plan
- State of the Art Research
- Conclusions

Introduction

- American Society of Mechanical Engineers (ASME) enables collaboration, knowledge sharing, career enrichment, and skills development across all engineering disciplines, toward a goal of helping the global engineering community develop solutions to benefit lives.
- NAU ASME's primary focus points
 - projects run by the students (Human Powered Vehicle (HPV), Student Design Competition, RC Baja)
 - speakers and tours that help the students network with industry professionals
 - Career development seminars (Student Professional Development Conference, Career Workshops)

Source: Nau.edu

Source: Nau.edu

Introduction Continued

Perry Wood

- Professor at NAU for 12 years
- ASME Adviser for 8 years
- Has been a part of HPV for 8 years
- NAU Machine Shop manager for 12 years
- Studying for his PhD in mechanical engineering emphasizing in fatigue characterization of magnetic shape memory alloys

Source: Nau.edu

Need Statement

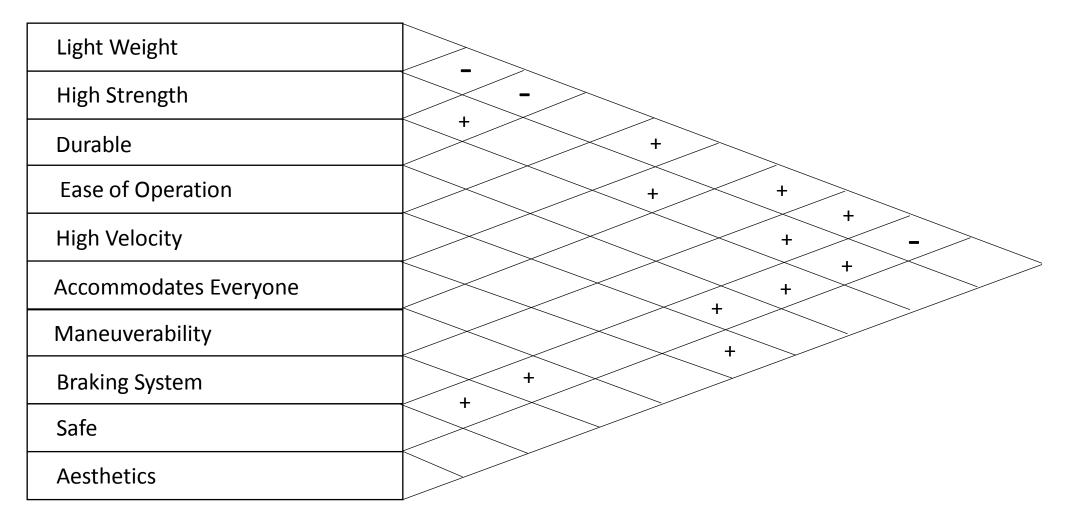
•Human powered vehicles are the best way in underdeveloped countries to commute, but they lack efficiency, reliability, and safety for the people using them.

Project Goal

•The goal of this project is to eliminate vehicles by designing and building safe, efficient, and reliable vehicles that can be powered by humans.

Objectives

- Attain speeds greater than 30 mph
- Lightweight material to reduce overall weight
- Frame can support additional weight from various items
- High maneuverability
- Driver safety

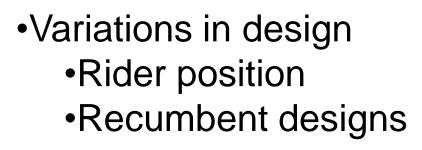

Constraints

- Can not be the vehicle from previous years
- Must be able to fit every individual team member inside
- Need some form of turning signals
- Brakes and seatbelt
- Driver must have a field of vision of 180 degrees

Quality Functional Deployment

Customer Needs	L Engineering Requirements	Lightweight	High Strength	Durable	Ease of Operation	High Velocity	Accommodating to All Persons	Manuverability	Braking System	Safe	Aesthetics
Solely Human Powered			-			-		2		0)	~
Travel at Least 10km				×	\sim			×			
Has a Rollover Protection System		×	×	×						×	
Comes to a Stop Within 6m While travelling 25km/h						×			×		
Turns Within an 8m Radius								Х			
Travels Straight for at least 30m								×			
Utilizes a Safety Harness										×	
Contains no Hazardous or Sharp Edges										×	
Sustains Forces of 2670N and 1330N to the Top and Side of											
Vehicle, Respectively			×	×						×	
Accommodates Any and All Team Members							×				
Aesthetically Pleasing											\times

House of Quality



Project Plan

Task	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Meet with client													
Problem definition													
SOTA research													
Establish objectives/constraints/requirements													
Concept generation													
Rudimental concept evaluation													
Refinement of select concepts													
Concept evaluation													
Concept selection													
Concept simulation													
Initial analysis/simulated testing													
Objective prioritization													
Design/model refinement													
Design review													
Model synthesis													
Design review													
Presentation/report finalization													

State of the Art Research

- •Material in which they are constructed
 - Alloys
 - Composites

Source: Atomic Zombie

Source: Atomic Zombie

•Aerodynamics

Conclusions

- Human powered vehicles are usually used in underdeveloped countries, but they lack in efficiency, reliability, and safety
- The goal of this project is to eliminate vehicles by designing and building safe, efficient, and reliable vehicles that can be powered by humans
- Design objectives include high speed, light weight, high strength, high maneuverability, and a high degree of driver safety
- Constraints include a new design with turn signals, brakes, a harness, a 180° field of view, and pure human power
- Current competition vehicles are made of metal alloys or composites, or a mixture of both, with a recumbent riding position and minimal aerodynamic effects

References

- "24 Hour Human Powered Distance Record Attempt." 24 Hour Human Powered Distance Record Attempt. N.p., n.d. Web. 23 Sept. 2015.
- American Society of Mechanical Engineers . n.d. < https://www.asme.org/about-asme>.
- "AtomicZombie The Warrior Recumbent Tadpole Racing Trike." AtomicZombie The Warrior Recumbent Tadpole Racing Trike. N.p., n.d. Web. 23 Sept. 2015.
- Dieter, George. Engineering Design: A Materials and Processing Approach. New York: McGraw-Hill, 1983.
- "The Recumbent Bicycle and Human Powered Vehicle Information Center." The Recumbent Bicycle and Human Powered Vehicle Information Center. N.p., n.d. Web. 23 Sept. 2015.